$$A = \frac{8.800}{\frac{1}{1,035^5} \frac{1,035^5 - 1}{0,035}} = 1.949,04$$

Tilgungsplan:

k	Z	T	R	A
1	308,00	1.641,04	8.800,00	1.949,04
2	250,56	1.698,48	7.158,96	1.949,04
3	191,12	1.757,92	5.460,48	1.949,04
4	129,59	1.819,45	8.800,00 7.158,96 5.460,48 3.702,56	1.949,04
5	65,91	1.883,13	1.883,11	1.949,04

$$m = 360$$

 $t = (12 - 7) \cdot 30 + (30 - 5) = 175$
 $n = 8$
 $E = 3 \cdot r$, also $\frac{E}{r} = 3$

aus der Auflösung der verallgemeinerten Zinseszinsformel:

$$F(q) = \frac{t}{m} q^{n+1} + \left(1 - \frac{t}{m}\right) \cdot q^n - \frac{E}{r}$$

$$F'(q) = \frac{t \cdot (n+1)}{m} \cdot q^n + \left(1 - \frac{t}{m}\right) \cdot n \cdot q^{n-1}$$

$$q_1 = \sqrt[n]{\frac{E}{r}}$$

Mit Zahlen:

$$F(q) = \frac{175}{360}q^9 + \left(1 - \frac{175}{360}\right) \cdot q^8 - 3$$

$$F'(q) = \frac{175 \cdot 9}{360} \cdot q^8 + \left(1 - \frac{175}{360}\right) \cdot 8 \cdot q^7$$

$$q_1 = \sqrt[8]{3} = 1,14720$$

Iterationstabelle:

k	q	F(q)	F'(q)
1	1,14720	0,214606	23,8754
2	1,13821	0,00620821	22,4987
3	1,13793		

damit p = 13,79

Aufzinsung aller Zahlungen zum Ende des n-ten Jahres

$$G \cdot q^n + r \cdot q \cdot \frac{q^n - 1}{q - 1} = E$$

Auflösung nach q^n

$$G \cdot q^n \cdot (q-1) + r \cdot q \cdot (q^n-1) = E \cdot (q-1)$$

$$q^n \cdot (G \cdot (q-1) + r \cdot q) = E \cdot (q-1) + r \cdot q$$

$$q^{n} = \frac{E \cdot (q-1) + r \cdot q}{G \cdot (q-1) + r \cdot q}$$

Auflösung nach n

$$n = \frac{\ln \frac{E \cdot (q-1) + r \cdot q}{G \cdot (q-1) + r \cdot q}}{\ln q}$$

Mit Zahlen

$$n = \frac{\ln \frac{11.219,93 \cdot 0,045 + 200 \cdot 1,045}{3.200 \cdot 0,045 + 200 \cdot 1,045}}{\ln 1,045} = 16$$

$$s = (12 - 4) \cdot 30 + (30 - 3) = 267$$

$$t = (12 - 10) \cdot 30 + (30 - 21) = 69$$

$$m = 360$$

Aufzinsung zum jeweiligen Jahresende

$$F = r \cdot (1 + \frac{s}{m} \cdot (q - 1)) + r \cdot (1 + \frac{t}{m} \cdot (q - 1))$$
$$= r \cdot \frac{s + t}{m} \cdot q + 2 \cdot r - r \cdot \frac{s + t}{m}$$

Aufzinsung aller Zahlungen zum Ende des 2. Jahres $F \cdot q + F = E$

Aufstellen der Lösungsgleichung

$$r \cdot \frac{s+t}{m} \cdot q^2 + 2 \cdot r \cdot q + 2 \cdot r - r \cdot \frac{s+t}{m} = E$$

$$r \cdot \frac{s+t}{m} \cdot q^2 + (2r) \cdot q + (2r \cdot r - r \cdot \frac{s+t}{m} - E) = 0$$

Auflösung der quadratischen Gleichung

$$q_{1,2} = \frac{-2r \pm \sqrt{(2r)^2 - 4r\frac{s+t}{m}(2r - r\frac{s+t}{m} - E)}}{2r\frac{s+t}{m}}$$

Auswahl von q mit q > 1

$$p = 100 \cdot (q - 1)$$

(a)

Aufzinsung aller Zahlungen zum Ende des n-ten Jahres $E = r \cdot q^{n-1} + r \cdot q^{n-2} + r \cdot q^{n-3} + \dots + r \cdot q^2 + r \cdot q + r$

Auffinden einer Formel ohne Pünktchen

$$E = r \cdot (q^{n-1} + q^{n-2} + q^{n-3} + \dots + q^2 + q + 1)$$

$$E = r \cdot (1 + q + q^2 + \dots + q^{n-3} + q^{n-2} + q^{n-1})$$

$$E = r \cdot \frac{q^n - 1}{q - 1}$$

(b)

Einsetzen von q = 1 in Formel mit Pünktchen $E = r \cdot (1^{n-1} + 1^{n-2} + 1^{n-3} + ... + 1^2 + 1 + 1)$

$$E = r \cdot (1^{n-1} + 1^{n-2} + 1^{n-3} + \dots + 1^2 + 1 + 1)$$

$$E = r \cdot (1 + 1 + 1 + \dots + 1 + 1 + 1)$$

da in Klammer n Mal die Eins

$$E = r \cdot n$$